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COMMENT 

More about the non-standard R-matrix associated with SU,(2) 

MO-Lin Ge and Yi-Wen Wang 
Theoretical Physics Section, Nankai Institute of Mathematics, Tianjin 300071, People's 
Republic of China 

Received 23 September 1992 

Abstract The Markov trace is constructed for the general R-matrices associated with 
SU,(2) at q a root of unity. The relationship between the R-matrices derived based on 
quantum algebra and those obtained by Akutsu el a1 is clarified. 

1. Introduction 

The 'non-standard' family of R-matrices associated with the spin model was firstly 
discussed by Lee et al [ 13 and can simply be interpreted in terms of the representations 
of quantum algebra [2-41. In [2-4] we presented general formulae of coloured R- 
matrices on the basis of a direct application of Drinfeld preliminary theory [5 ]  at q a 
root of unity. The main calculations were made through the q-boson realization of 
quantum algebra for SL,(2) [6,3]. 

It is known that for the q-commutators 

[ J+ , J-I = [Jol [ J o ,  J*l=*U; ( 1 . 1 )  

[nl= ( q n - q - n ) / ( q - q - ' )  (1.2) 

where 

the mapping SLq(2) + Bq defines a q-boson realization of SL,(2) with generators J ,  
and Jo 

J + + B ( J + ) = a + a ( N )  

J - - , B ( J - ) = a p ( N )  ( N = a + a )  (1.3) 
J0+ E(  Jo) = 2 N  - A 

with 

aa+ - q-'a+a = q N  [ N , a C ] = a +  [ N , a ] = - a  

if a ( N )  and P ( N )  satisfy 

a ( N -  l ) P ( N ) = [ A +  1 -NI  A€E. (1.4) 
After calculations we find that the formulae of Drinfeld give [2-41 

( 1 . 5 )  
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where 
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a ( N - 1 .  Aj)/3(N, A, )=[Aj+l -N]  i= l ,2 .  (1.6) 

Equation (1.5) leads to the universal R-matrix form [2-41 

(dilh(A, p))$ 

k (l-q-')" - ~ " ( " - l ) + " l , , - j ~ + b - ~ - l A + l ~ )  
4 2 ( j , + b - l A ) ( j 2 + ' - b . )  8;s; + 1 I n=a [nl!  = 4  

(1.7) 

where k=min(2j,,2j2), ~ , , ~ ( p ) = a ( j + m , p ) ,  /3 j ,m(f i )=/3( j+m,f i )  and q- 1.  It 
is noted that q is a cyclic parameter whereas A and p are continuous ones and are 
referred to as 'colours'. Equation (1.7) satisfies 

q k + l  = 
I x n ~ J , , m + L - l ( A ) / 3 , ~ , i - L + ~ ( p ) [ j ~ +  i -  L+ llSb,+.S:-,, 

L=o 

&d& @)&(A, Y ) ~ I Z ( P ,  = &(I*. uJ&(A, u ) & O ,  p). 

All of the known coloured or non-coloured non-standard R-matrices associated 
with SU(2) are special case of (1.7) [4]. 

In this note we shall 6rstly calculate the inverse of R ' l j > ( A ,  p) and construct the 
Markov trace. Secondly we shall prove that by making the coloured symmetry breaking 
transformation, (1.7) leads to aU the results of [7-91. 

2. Markov trace properties 

Equation (1.7) can be recast into the form 
h 

( & j , j I ( A , p ) ) ~ = q 2 ( j , + b - t * ) ( j i + . - ) l l )  A ( ~ .  9 , )  a b m, j ) ~ !  I - "  a b  m+n 

where 

into (2.4) to determine B ( n ;  c, d, m, i )  where 

A = Z(j ,  + m -+A)(j,+ i -;,U). 
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After calculations we find that 
($jZ(A, p))$ 

(2.7) 
where C ( n ;  i, m) are given by (2.3) with m e i .  In the derivation of (2.7) the relation 

(2.7a) 

when 

has been used (for the definition of [:I4, see (3.2)). When A = p and j ,  = j z  (2.7) turns 
out to be the known results given by [l]. 

In order to discuss the Markov trace [7,10] and Alexander polynomials [ I ,  111 
only the case A = p should be considered and a diagonal matrix h (or h') should be 
found such that 1111 

tr ,(d(IO h)) = r l  tr2(R( IO  h')) = ?I (2.8) 
where r and .T are scalars and tr, means that the trace is taken on the second space 
only. Equation (2.8) requires 

" _  
l + n - j + n - i  , - - - 

l??-(h' 1-1 -I .=. . .=RI$:I{::hLj+,+ RIj+&j+n- ih - j+n- t - .  . . . (2.10) 
i = 1  

Through direct calculations we obtain 
h = h'= diag(1, q2,.  . . , q4') 

, = q $ n i - 4 j ~ + ~  ?= q-lA' ,  (2.12) 

trh=O (2.11) 

and 

The general proof of satisfaction of Murakami's redundant conditions [ 111 for the 
enhanced Yang-Baxter operators associated with R is difficult. The rigorous verification 
of the existence of Alexander-type link polynomials for j = 1 has been given explicitly 
in [ 121. 

3. Coloured symmetry breaking transformation and the consequences 

Akutsu et a i  [7-91 presented the solutions of the R-matrix 

G%a.  P ;  +) 
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form - n  0 
for m - n e0 (3.2) 

(3.3) 

(3.4) 

We shall prove that (3.1) is the consequence of coloured symmetry breaking transforma- 
tion of (2.1) with j, = j2. The proof is based on the following statements: 

(1) If d(a,  p )  satisfies 

then 

&(a, p )  = ( f ( a ) ) l ( " , b , " d ' ( f ( p ) ) 5 ( o , b . ~ d ) d ~ ~ ( a ,  p )  

L(a, b, e, d )  = ub + vc <(U, b, c, d )  = -ud - vb 

t ( a ,  b, e, d )  = -w(a  - d ) ( e +  b ) .  

(3.6) 

(3.7) 

(3.8) 

satisfies the same equations for 

or 

C(U,  b, C, d )  = W ( U  + d ) ( c  - b)  
(2) If d ( a , p )  satisfies ( 3 . 9 ,  it does so for 

By making the transformation (3.7) and by (3.9), then (3.1) can be simplified to 

and the inverse to 

(3.9) 

(3.10) 

(3.11) 

Both satisfy (3.5). Equation (3.11) can be written as 

(3.12) 

where a = Z-', w = qT2. 

appearing in (1.7). On the other hand (1.7) can be rewritten in the form 
Later we shall see that the variables q and p used here are the same as those 
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where 

a m - i ( A ) P m ( A )  = [A -m+ 1 1  
(3.15) 

p =$Ap+2ab - ah - bp - i n ( n  + 1)+ n(b  - a ) - f n ( A  -p) .  

By using (3.15), equation (3.14) can be recast to 

Which is related to (3.12) by 

(3.17) 

where 

a q2' and w = q-2. (3.18) 

Obviously the coe5cients before &$(a, p ;  -) in (3.17) are nothing but the transforma- 
tions (3.7) and (3.9). We thus conclude that (3.1) and (1.7) are related to each other 
by successive coloured symmetry breaking transformations in the straightforward way. 
The relationship between the parameters is given by (Y = q2' and o = q-', consistent 
with the previous calculations I. 121. 

n;:; CGj(p) 
H ( p , a ) =  
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